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Abstract—The development of effective source localization
techniques has broad reaching implications across multiple do-
mains and environments. Whether it be natural resource de-
tection, environmental monitoring and conservation, search and
rescue, navigation, mine countermeasures or endless additional
applications it is an interesting and complex problem that can be
solved by the implementation of machine learning algorithms. In
this paper, we show that an artificial intelligent agent trained
with Reinforcement Learning in a Q-learning algorithm can
reliably locate a source of pollution in deterministic and stochastic
environments.

Index Terms—reinforcement learning, q-learning, source local-
ization, model and simulation, pollution

I. INTRODUCTION

Source localization is a technical challenge spanning multi-
ple domains from military mine counter measures, commercial
offshore oil detection and environmental monitoring of point
source pollution. Traditional methods for detecting and local-
izing potential contaminants require extensive administrative
oversight, time consuming laboratory analyses and are depen-
dent on the time and spatial distribution of field teams. The
environmental problems that field teams face in the ocean are
dynamic, complex and time sensitive requiring rapid response
and are often beyond the reach of human teams. In circum-
stances such as oil leaks, chemical plumes or harmful algal
blooms a person may perceive a problem at the sea surface
which originates miles below. These circumstances often call
for quick action and ability to reach extreme environments
that may not be accessible to field teams but are accessible to
autonomous agents. For this reason autonomous underwater
vehicles (AUVs) have been developed to extend field sensing
capabilities.

The vehicles used today are “autonomous” in the sense they
can be set with a mission and sent out, however, they are not
intelligent [1]. When faced with a problem that does not have
the goal state associated with coordinates, many systems fall
back on basic lawnmower, yo-yo or spiral patterns in order
to cover a broad space within the region of interest. These
brute force methods are effective for mapping a space, however
when detecting and locating a threat is time sensitive, the abil-
ity to set out with a mission and adapt to sensory information

Source code at https://github.com/tljstewart/openai-rl-findit/tree/main

is essential. Oftentimes AUVs are equipped with sensor suites
that allow for high resolution data throughput and post analysis
to tackle an array of monitoring mission objectives. Many of
these sensors can be directly linked into the control board
to provide rich sensory information such as underwater mass
spectroscopy (UMS), dissolved oxygen (DO2) fluorescence,
backscatter and other optical measurements. By utilizing these
sensor suites the AUV has increased capacity to perceive its
environment and learn about the conditions in a framework
that is related to the mission objective.

In this paper we will apply a Reinforcement Learning
approach using a Q-learning algorithm to teach a single agent
how to locate a source based on sensory inputs from the marine
environment. We will simulate this agent in a 3 dimensional
space in which pollution is distributed as a diffuse gradient
representative of a plume as well as a stochastic distribution
similar to the distribution pattern of an oil spill. The objective
is to train the agent to detect pollution levels and learn to
guide itself to the source based on these percepts. This paper
will be organized in the following manner. Section 1 which
you have already read will introduce the problem. Section
2 we will discuss the background of source localization, the
various approaches, related works and a brief overview of Q-
learning. Section 3 we will review methods for developing the
simulation environment and the configuration of the agent goal
and learning parameters as well as the experiment

II. RELATED WORKS

A. Source Localization

Historically the problem of source localization has been
tackled from stationary sensing nodes, physical sample col-
lection by field teams, towed sensor arrays behind ships
or more recently with the use of autonomous vehicles(AV).
Autonomous vehicles provide the most flexibility of all the de-
tection and localization modalities due to their ability to reach
remote and extreme environments as well as perform long term
deployments ranging from weeks to a year depending on the
vehicle architecture. Whereas the other methods for detecting
and localizing require extensive manpower, resources and time
succumbing to spatial and temporal limitations. The variety
of vehicles available for autonomous monitoring and sensing
range from gliders, surface vehicles, lagrangian drifters and



torpedo shaped submersibles; this array of platforms enables
multiple approaches toward solving the source localization
problem. However current deployment of these vehicles is
constrained by the inefficient predefined trajectories and limi-
tations in operator-vehicle communications that prevent trajec-
tory modification [2]. In the marine environment communica-
tion is bandwidth limited and in some instances such as local-
ization for mine counter measures, communication and human
intervention for trajectory modification is restricted therefore
a need for increased autonomy and higher levels of system
intelligence are essential [3]. The importance of expanding the
functionality and applicability of these vehicles in low commu-
nication environments with varying levels of uncertainty has
been identified as a key research area by multiple institutions
including the National Defense Research Institution, Academic
research groups and environmental research institutions such
as Woods Hole Oceanographic Institution.

B. Approaches

In the past 20 years research in the area of autonomous
source localization and vehicle control by means of chemical
profiling and on board sensors has increased significantly.
Evidence supporting onboard chemical profiling for plume
tracing and source localization can be found in many field
studies including the work of [4]–[8]. However, of the field
demonstrations, many are trajectory limited to the traditional
lawnmower and yo-yo patterns designed to cover a large area.
Although effective for mapping large swaths these methods
of trajectory planning are inefficient when considering the
precisely localized problem of source localization [2]. Recent
work integrating on board sampling for adaptive trajectory
control focuses on one of three areas: targeted features of inter-
est (TFOI), objectives of sampling mission (OSM), and multi-
vehicle networking. Some related efforts involve adaptive
sampling techniques which include informative path planning
strategies such as those employed by [9], [10] integrating
sensory information with the vehicles working environment
model to update the trajectory. One such approach is that of
[2] in which they use real-time information-seeking algorithms
to optimize source localization tasks by having the agent au-
tonomously decide sampling locations. Of the works reviewed
[2] was the only paper that showed promising simulation
results which translated to actual field performance.

Outside of limited field demonstrations, much of the current
research is simulated with the majority providing simulations
in a 2D grid [7], [11]–[13] [14]. This limitation is typically due
to computational constraints and the increase in complexity
and computational demands of simulating an environment in
3D.

In the works reviewed methods for source source localiza-
tion include: supervised learning methods [15], chemotaxis
and Fisher Information Matrix [11], and a range of reinforce-
ment learning approaches (RL) [7], [12], [13], [16] [14]

In [15] Source Localization in an Ocean Wave-guide Using
Supervised Machine Learning they compared Support Vector
Machines (SVM), Feed-forward Neural Networks and Ran-

dom Forests have been explored for the solving of acoustic
source localization [15]. However the attenuation behavior of
acoustics and chemical contaminants in water are incompa-
rable and the state space is exponentially larger for chemical
dispersants making supervised learning methods an inefficient
approach to the localization of contaminants.

[11] work in optimal search strategies developed a prob-
abilistic representation that adaptively account for source
location in uncertainty using the Fisher Information Matrix
and compared their results to systems using chemotaxis and
information taxis [11]. But their simulations were limited to
2D and results indicated the method was subject to pitfalls of
local minima and maxima.

Fig. 1. Global, local maxima, minima and shoulders that can stump an agent.

A number of RL methods have been proposed [12], [13].
[7], [14], [16] Of the papers reviewed three contributed to
overall vehicle control and spatial navigation related to matters
of depth control, obstacle avoidance and propulsion. As it is
related to this work, the papers by Weidemann and Wang
implemented and supported the use of RL for the subject of
source localization. [17] used a model based method which is
dependent on a priori knowledge of the environment and high
fidelity of the model.

C. Reinforcement Learning Approach
As it stands, there are limited applications of RL in the

domain of source localization and of those that do employ an
RL method many provide only 2D simulations. Those who
have researched 3D simulation or field work rely on model-
based learning which are subject to high fidelity modeling
during agent training, which is notoriously difficult due to the
complexity of the environment. Additionally, the constraints
introduced by vehicle communications and the proven need for
increased autonomy means that online mission reconfiguration
is limited. [17] [3].

III. METHODS

A python interface was implemented to simulate an agent
and a three-dimensional environment. A uniform concentration
gradient in a deterministic environment was applied around
a source point which the agents goal was to locate, later
a stochastic pollutant environment was applied based on a
pseudo-random gaussian distribution for pollution concentra-
tions. The agent was trained using reinforcement learning, with
a Q-Learning Algorithm.



A. Q-Learning

Q-Learning is a Reinforcement Learning (RL) algorithm
based on the Q-Value Iteration Algorithm first developed
by Richard Bellman in the form of the Bellman Optimality
Equation, that utilizes a Markov Decision Process which are
directed graphs to find an optimal reward defined by a state
and action probabilities one may take in that particular state
to acquire an associated reward with an agents decision. Q-
Learning is said to be an off-policy algorithm as the policy
that is being trained is not the final policy being utilized.

NewQ(s, a)︸ ︷︷ ︸
New Q-Value

=Q(s, a)︸ ︷︷ ︸
Current Q-Value

+α∣∣∣
Learning Rate

[R(s, a)︸ ︷︷ ︸
Reward

+ γ∣∣∣∣∣
Discount rate

Maximum predicted reward, given
new state and all possible actions︷ ︸︸ ︷

maxQ′(s′, a′)−Q(s, a)]

(1)

Fig. 2. Simple MDP with three states (green circles) and two actions (orange
circles), with two rewards (orange arrows).

B. ε−Greedy
One can invoke an exploration behavior for the RL agent

by providing pure randomness to the algorithms decision,
however we implement a ε − Greedy policy where varies
between 0 and 1. The closer to 1 epsilon is the greater the
exploration of the RL agent, while the closer to 0 the greater
the exploitation of RL agent with prefer which leads to always
selecting the maximum learned reward at that state. However,
one must be aware that the maximum learned reward may
not be a global maximum, that is why initial training should
start with a high exploration to discover global maximum and
gradually reduce epsilon to exploit this learned maximums.

C. Learning Rate

The learning rate is a step size that determines the extent
newly acquired information overrides old information. A factor
of 0 makes the agent learn nothing forcing the agent to
exclusively exploit prior learned knowledge, while a factor
of 1 makes the agent consider only the most recent infor-
mation, ignoring prior knowledge to explore and hopefully
to discover globally maximum rewards. In fully deterministic
environments, a learning rate of αt = 1 is optimal, and while
the problem is stochastic and variable learning rate may be
useful. In practice, often a constant learning rate is used, such
as αt = 0.1 for all t.

D. Discount Factor

The discount factor γ is a parameter value between 0 and
1 that determines the importance of future rewards. A factor
of 0 will make the agent ”greedy” by only considering current
rewardsrt while a factor approaching 1 will make it strive for
more long-term high rewards. γ , starting with a lower discount
factor and increasing it towards its final value accelerates
learning.

E. Objective

Demonstrated methods of source localization such as local
search and optimization problems guided by chemotaxis are
not efficient for large search environments or remote isolated
sources due to their affinity for local minima and maxima. The
contribution of this work aims to implement an RL method that
balances the trade-off between exploration and exploitation
to efficiently locate and navigate toward the “source” in a
relatively large static environment

Fig. 3. Left shows the agent moving in the environment and sensing the
states. Right shows the 3D representation of the policy containing the Q-
values associated to the location within the environment.

F. Environmental Sensors and Percepts

The agent’s mission is to find a pollution source, this task
lends itself to multiple potential sensory inputs ranging from
pH, ctd, fluorometry, optical backscatter and dissolved oxygen
sensors. In earlier renditions the agent receives information
regarding pollution level as a non specific measure. This is
left intentionally vague as ‘pollution’ can refer to anything
from anthropogenic runoff to oil spills and beyond. However,
many types of marine pollution influence the level of dissolved
oxygen available in the water. This is due to pollution’s impact
on the microbial community, in particular phytoplankton.
These organisms are responsible for oxygen production in



the photic zone and can be choked out by oil spills blocking
sunlight or overbloom and die off in harmful algae blooms.
Either effect results in a net loss of dissolved oxygen in the
surface layer of the ocean. For this reason dissolved oxygen
(DO2) sensor input is provided to the agent in the form of an
immutable tuple correlated to a location and a pollution level
at that location.

Fig. 4. Left 3D and Right aerial representation of the environment in which
the pollution is diffused over a gradient with the Goal state being located in
the center of the space. The goal is the state with 100% pollution which is
represented in bright yellow. As the pollution level decreases the “water” is
visualized with a bluer coloration.

Q-learning was employed to allow the agent the ability
to explore and build upon its knowledge of the surrounding
environment through “experiences”. Experiences were set as
a tuple of three ((coordinates), DO2, pollution) and were
appended for every action the agent took. The quality of
moving to a new location was estimated based on the reward
for being at the current location + the utility of all of its
successor states. This was calculated by iterating over a list of
possible moves the agent could make and appending a utility
table the agent kept track of in an internal data structure.
For the 1st trial the agent would return mostly zeros until it
reached the goal, this is because utility is a function of reward
and discount factor which is representative of preference over
immediate vs distant reward. Once the source location was
found the surrounding locations could be appended in the
agent’s memory and become more precise to their true quality
with every iteration. The RL agent was trained on a 12x12x12
search space where each state had a reward value of 0, while
the source state reward was set to 100. γ was set to 0.9 in
order to encourage the agent to reach the goal rather than
accumulate reward during exploration.

Exploration was an important component of the agent’s
utility memory and learning determining whether or not the
agent experienced all the states in the space or preferred taking
a direct path. This direct path seems like the obvious approach,
however, if the agent does not spend enough time exploring the
utility estimates are inaccurate making it difficult to navigate
efficiently. To encourage exploration random actions were
chosen in the beginning with a rate of decay ε of 0.999.
Decay rate determines how long the agent prioritizes random
movement over exploiting learned utility policy. Because the
state space was so large a slow decay allowed the agent to
explore more of the space in the beginning. Exploitation occurs
once utility exceeds decay, at which point the agent prioritizes

its following actions based on the utilities it has learned along
the way.

Algorithm 1: Q-Learning
States X = {1, . . . , nx}
Actions A = {1, . . . , na}, A : X ⇒ A
Reward function R : X ×A → R
Black-box (probabilistic) transition function
T : X ×A → X
Learning rate α ∈ [0, 1], typically α = 0.1
Discounting factor γ ∈ [0, 1]
Procedure QLearning(X , A, R, T , α, γ)
Initialize:Q : X ×A → R arbitrarily
while Q is not converged do

Start in state s ∈ X
while s is not terminal do

Calculate π according to Q and exploration
strategy (e.g. π(x)← argmaxaQ(x, a))
a← π(s)
r ← R(s, a) ; . Receive the reward
s′ ← T (s, a) ; . Receive the new
state
Q(s′, a)←
(1− α) ·Q(s, a) + α · (r + γ ·maxa′ Q(s′, a′))
s← s′

return Q

IV. EXPERIMENTS AND RESULTS

A. Environment

The marine environment is dynamic, but for the purposes
of this development the worlds generated will remain static
and will vary between deterministic and stochastic. This is
relevant when sampling for pollution as there are multiple
different pollution types: chemical plumes, oil spills, harm-
ful algal blooms (HABs) and anthropogenic runoff. These
pollution types can distribute differently in the environment
especially given changing environmental conditions such as
sea states, wind, currents, solar radiation and multiple physical
and chemical factors. To simplify for the purposes of this
environmental model we categorize based on how stochastic
or deterministic each type of pollution typically disperses.

Both chemical plumes and anthropogenic runoff disperse
in a more predictable manner (without accounting for hy-
drodynamic conditions) diffusing the further away from the
source, for this reason they are categorized as deterministic. In
contrast oil spills and harmful algal blooms appear in patches
interspersed with open relatively ‘clean’ water, or in other
words with a more stochastic distribution. The level of de-
terminism and stochasticism was controlled by a gradient and
noise function in the environment generation. The equation for
calculating pollution is as follows and is modified with noise
amplitude if stochastic.



Fig. 5. Deterministic pollution environment in which the pollution is diffused
over a gradient with the goal state being located in the center of the space.
The goal is the state with 100 percent pollution which is represented in bright
yellow.

Fig. 6. Stochastic pollution environment in which the pollution is diffused
over a gradient with the goal state being located in the center of the space.
The goal is the state with 100 percent pollution which is represented in bright
yellow.

B. Results

1) Deterministic: The first environment the model was
tested against was a deterministic one. That is, little noise
or distortion within the data. This was done with an epsilon
value of 0.95, gamma value of 0.9, and an alpha of 0.5. In
figure 7 the training results can be seen. Around the 500th
iteration the q-values started to provide an optimal path to the
source at which point the average steps per run to achieve the

Algorithm 2: Environment Generation

for dimensions = x, y, z, do
begin
4x = sourcex − x
4y = sourcey − y
4z = sourcez − z
distance =

√
4x2 +4y2 +4z2

pollutionat(x, y, z) = 1− distance
end

goal begins to decline rapidly. Figure 8 represents how the
trained model performed on a source at the same location as
the training data. It can be seen that the agent has learned
from the training and is much more efficient when using the
generated q-values.

Moving the source changed how well the model performed,
that can be seen in figure 9. This is because the training is
specific to a certain source location and not adaptive. This
topic will be addressed in future work.

Fig. 7. Training results from deterministic pollution environment

Fig. 8. Testing results from deterministic pollution environment with the same
source location as training

Fig. 9. Testing results from deterministic pollution environment with a source
location that is different from training

2) Stochastic: Noise has been added to the environment
generation to make the pollution distribution more stochastic.
The agent was then trained in this new environment and then



tested using the same source location as training. The training
results can be seen in figure 10 and testing in figure 11. Notice
that the running average is not too different between training
and testing. This implies that the learned q-values are no better
than exploration in this environment. This is also a problem
with will discussed in future work.

Fig. 10. Training results from stochastic pollution environment

Fig. 11. Testing results from stochastic pollution environment with the same
source location as training

V. CONCLUSION

Traditional environmental monitoring methods for assessing
ocean health or tracking ocean pollution require extensive
administrative oversight, time consuming laboratory analyses
and are dependent on the time and spatial distribution of field
teams. The environmental problems that field teams face in the
ocean are dynamic, complex and time sensitive requiring rapid
response. In this paper we have shown how reinforcement
learning can be applied to an autonomous underwater agent
using Q-learning to not only seek out the source of pollutant
but identify the optimal path to the source.

VI. FUTURE WORK

Applying a Deep Q-Learning algorithm which utilizes a
Deep Neural Network to estimate the Q-values opposed to
using the Temporal Difference equation to find the optimal
Q-values may result in higher fidelity action decision making
based on the sensory input, resulting in actions with more
accurate associated Q-values. Another area of interest is
investigating the generality of Reinforcement learning, and
maximizing this transfer to similar source location task, for

instance, changing the pollutant to CO2, oil leakage, methane
or other chemical signatures that can be identified via UMS
and have higher spatial variability. Furthermore, to more
accurately reflect water currents in an underwater environment
the distribution of discretized pollutant nodes should reflect a
position and velocity vector on each time step as to resemble a
dynamic environment, and investigating these dynamic effects
on reinforcement learning for autonomous source localization.

Addressing the noticed issues in the results provides an
additional path for advancement. Pursuing Deep Q-Learning
may correct the noted issues along the way. However another
option is to look at a form of adaptive learning with testing.
That is, to test the model, but if needed slightly adjust the
q-values to account for a moved source. The distortion in the
environment may require other techniques be applied when
calculating the q-values to account for the non-uniformity.
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